Quadratic function fields with exponent two ideal class group

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast ideal cubing in imaginary quadratic number and function fields

We present algorithms for computing the cube of an ideal in an imaginary quadratic number field or function field. In addition to a version that computes a non-reduced output, we present a variation based on Shanks’ NUCOMP algorithm that computes a reduced output and keeps the sizes of the intermediate operands small. Extensive numerical results are included demonstrating that in many cases our...

متن کامل

The 4-class Group of Real Quadratic Number Fields

In this paper we give an elementary proof of results on the structure of 4-class groups of real quadratic number fields originally due to A. Scholz. In a second (and independent) section we strengthen C. Maire’s result that the 2-class field tower of a real quadratic number field is infinite if its ideal class group has 4-rank ≥ 4, using a technique due to F. Hajir.

متن کامل

The Ideal Class Group

We present a concise and self-contained definition of the ideal class group, which is useful for proving facts about zero sets of Diophantine equations, and discuss a few relevant key facts. We approach this by first assembling some preliminary definitions regarding algebraic integers, and subsequently delving into several useful results about lattices, including Minkowski’s lemma. Then, return...

متن کامل

Ideal Class Group Annihilators

A Jesús Muñoz Díaz por su cumpleaños Contents 1. Introduction. 1 2. Elliptic sheaves and Hecke correspondences. Euler products 3 2.1. Elliptic sheaves 3 2.2. ∞-Level structures 5 2.3. Hecke correspondences 6 2.4. Euler products 8 3. Isogenies and Hecke correspondences 9 3.1. Isogenies for elliptic sheaves 9 3.2. Trivial correspondences 11 4. Ideal class group anhilators for the cyclotomic funct...

متن کامل

The Ideal Class Group

When we form a finite algebraic extension of Q, we are not guaranteed that the ring of integers, O, in our extension will be a unique factorization domain (UFD). We can obtain a measure of how far O is from being a UFD by computing the class number which is defined as the order of the ideal class group. This paper describes the ideal class group and provides examples of how to compute this grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2006

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2005.02.004